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Abstract

In this Thesis I have summarized our research on the Hilbert space multireference coupled
cluster methods. Single-reference coupled cluster methods represent now well established
and routinely applicable techniques in the computational chemistry and yield highly ac-
curate results for most molecules close to their equilibrium geometry. However, when
studying chemical processes, one inevitably encounters systems which have a multicon-
figurational nature, for example some transition states, conical intersections, diradicals,
etc., and are thus poorly described by single-reference methods (at practical truncation
levels).
In contrast to the single-reference coupled cluster method, the development of its mul-
tireference counterpart is still a topic of active research, since such an extension is nei-
ther straightforward nor unique and several possible pathways have been proposed. The
Hilbert-space multireference coupled cluster methods, which this Thesis is concerned with,
represent the pathway which we have followed and where we have contributed. The Thesis
is based on 27 publications in peer-reviewed international journals spanning more than
a decade of research on the MRCC field, which I started after joining the J. Heyrovský
Institute of Physical Chemistry.
First, to open the Thesis, a brief survey of the coupled cluster method and overview of
different approaches to its multireference generalization is given in the Introduction.
The second chapter entitled Overview of Hilbert-space multireference CC methods starts
with a few sections reviewing the basis of the MRCC theory — CC ansatz, multiref-
erence perturbation theory, Jeziorski-Monkhorst ansatz, and the effective Hamiltonian.
Then the four variants of the Hilbert-space multireference CC methods are described
in the chronological order of their invention: first the state-universal method, then the
Brillouin-Wigner method (BWCC), which was the first state-specific MRCC method pro-
posed. Since BWCC theory is not size-extensive, it was necessary to devise size-extensivity
corrections, which are also described in this section. Then follows the Mukherjee’s MRCC
method (MkCC) and its equivalent linked formulation which we introduced, and finally,
for the sake of completeness, also a section describing the H2E2 method proposed by
Mahapatra and Chattopadhyay.
The third chapter Triexcitations in the Hilbert-space MRCC summarizes our development
of MRCC methods with triexcitations. In its first section the full iterative triexcitations
for BWCC and MkCC methods are presented, while the second section is devoted to
perturbative triexcitations approaches, which are computationally less demanding. The
state-universal method with triexcitations developed by Bartlett et al. is first reviewed,
then our BWCCSD(T) and MkCCSD(Tn) methods are introduced. The MkCCSD(Ti)
variant introduced by Evangelista et al. is compared with our approaches, and finally,
our MkCCSD(Tu) version of the method is described, which avoids the intruder state
problem without the necessity to iterate the T3 amplitudes
The fourth chapter Illustrative numerical results presents a few computational results
showing properties and performance of the developed methods. These include a study
of the effect of triexcitations on the spectroscopic constants of the oxygen molecule, as-
sessment of various versions of the Mukherjee’s MRCC method with triexcitations on the
BeH2 model investigating the effect of intruder states, and a study of the singlet-triplet
gap in the tetramethyleneethane molecule by Brillouin-Wigner and Mukherjee’s MRCC
methods with triexcitations. The selection is only illustrative, an extensive collection of
numerical results is present in the papers attached to the Thesis.
The Thesis closes with Conclusions, summarizing the general results of our research and
indicating possible future directions.
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1 Introduction

Quantum chemical calculations have become in the last decades an indispensable part of
both basic and applied research in chemistry. Despite the huge progress in the density
functional methods, which are today most popular among computational chemists due
to their relatively low computational cost, there is still a need for more accurate wave
function methods. Such methods are able to describe electron correlation effects with a
systematically improvable accuracy and high reliability.1 A prominent representative of
this class of methods is the coupled cluster theory (CC), introduced to quantum chem-
istry by ı́ek.2 The single-reference coupled cluster method with mono- and biexcitations
and perturbative inclusion of triexcitations (CCSD(T)) is today considered a “golden
standard” of computational chemistry, and it is available in many program packages and
employed widely in a big variety of chemical applications.3

Despite this success and enormous progress since the pioneering years, the coupled cluster
theory remains an active research field.3–7 Particularly its generalizations to systems with
several reference configurations, needed for description of molecules with open shell or
(quasi)degeneracies, are still not as simply and straightforwardly applicable as standard
single-reference methods. Solving this problem represents an interesting as well as impor-
tant goal, since there are several classes of chemically interesting systems, which are due
to the quasidegeneracies not easily accessible to single-reference methods. It is natural to
expect that multireference CC methods should play such a prominent role in description
of these systems, as the standard CC plays among single-reference methods.

During past years, many approaches how to apply the coupled cluster method to multiref-
erence problems have been suggested, which can be roughly categorized to the following
(not at all exhaustive) list: (i) Methods based on a single-reference expansion, which
employ formally a single Fermi vacuum and include higher excitations with indices par-
tially limited to an active space.8–12 (ii) Externally and internally corrected and reduced
multireference CCSD methods,13–17 which extract information about the most important
higher excitations or active space mono and biexcitations from an external calculation by
a different method like CASSCF or MRCI.13–17 (iii) Method of moments CC and (com-
pletely) renormalized CC methods, which are based on a CC energy correction computed
from projections of the CC wave function to higher excited determinants.18–22 (iv) Fock
space multireference CC methods,23–26 similarity-transformed methods27–30 and spin-flip
methods,31–33 whose common feature is the use of a single Fermi vacuum, from which the
states under study are generated by addition or subtraction of electrons or by a spin flip
of some electrons. (v) Hilbert space multireference CC methods34–39 based on the wave
operator in the Jeziorski-Monkhorst form34 or modifications thereof, where each reference
configuration represents one Fermi vacuum and has its set of amplitudes.

The Hilbert-space multireference coupled cluster methods, which this Thesis is concerned
with, represent the pathway which we have followed and where we have contributed. The
state-specific Brillouin-Wigner MRCC method originally proposed by Hubač, Mášik, and
Čársky,37,40,41 is a computationally tractable method resistant with respect to intruder
states. Our first result was an efficient implementation of this method with mono and
biexcitations (BWCCSD),38 later extended to a larger number of reference configurations
also with open shells.42,43 It has turned out, that this method lacks size-extensivity,
which can cause a big error when computing energy differences (like e.g. reaction energies
or dissociation energies).44 We have therefore developed a size-extensivity correction to
the BWCC method in an a posteriori form45,46 and later in the iterative form.47 The
BWCC methods has been successfully applied to a whole range of molecules from di-
atomics42–44,48–50 to organic diradicals.51–56 The state-specific Mukherjee MRCC method
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was proposed later than the BWCC method36,57 and its main advantage is the exact size-
extensivity. Several groups including us have been involved in its development during the
past decade. Presently it seems more promising than the BWCC method, however, it
still lacks some important features, mainly the invariance with respect to active orbital
rotations.
An extensive numerical experience with single-reference coupled cluster methods has
shown, that the truncation of the cluster operator at the singles and doubles level does
not yield results of chemical accuracy (e.g. for reaction or activation energies). To achieve
this level of accuracy, it is necessary to include also triexcitations, either exactly at the
CCSDT level,58,59 or in a perturbative way CCSD(T).60 When also static correlation
plays a role, triexcitations should similarly be included to the MRCC methods. We have
included triexcitations to the BWCC method in both iterative61,62 and non-iterative63

manner, as well as to the MkCC method.64,65

This thesis attempts to provide a concise overview of the Hilbert-space MRCC theory
with emphasis on our own contributions to the field. The topics covered in individual
chapters of the Thesis are summarized below.

2 Overview of Hilbert-space multireference CC meth-

ods

This section of the Thesis gives an overview of the Hilbert-space multireference CC meth-
ods. It starts with introductory paragraphs about the CC exponential ansatz and mul-
tireference perturbation theory, introduces the Jeziorski-Monkhorst Ansatz and Effective
Hamiltonian. Finally, our contributions to the BWCC and MkCC methods in general
and at the singles and doubles level are also covered in this section.

2.1 Multireference perturbation theory

The multireference perturbation theory is conveniently formulated by means of the wave
operator and Bloch equation.67,68 As usually in the perturbation theory, one splits the
total Hamiltonian to an unperturbed one and perturbation

H = H0 + V (1)

The eigenfunctions of the unperturbed Hamiltonian H0 are assumed to be known and
will be denoted as Φµ. Then one defines an M -dimensional model space P spanned
by Φµ, µ = 1, . . . ,M , and its orthogonal complement Q. The appropriate projection
operators are denoted P and Q = 1 − P . The α-th eigenfunction of the full Hamiltonian
H is assumed to have a nonzero projection onto the model space

ΨP
α ≡ PΨα =

M
∑

µ=1

cαµΦµ (2)

The wave operator Ωα transforms such a projection back to the eigenfunction of the exact
Hamiltonian

Ψα = ΩαΨP
α (3)

and it may in general be state-specific, carrying thus the subscript α. The intermediate
normalization

〈Ψα|Ψ
P
α 〉 = 1 (4)
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can be used, if the model space P is complete, i.e. contains all Slater determinants
possible for a selected subset of active orbitals, given z-projection of the spin, and spatial
symmetry. In such a case, the wave operator must not generate excitations which would
transform the reference functions Φµ, µ = 1, . . . ,M between each other and it holds

PΩαP = P (5)

The exact energy is then obtained as the eigenvalue of a (non-Hermitean) effective Hamil-
tonian, which has the form

Heff
α = PHΩαP (6)

In the state-specific (SS) theories, only its α-th eigenvalue

Heff
α ΨP

α = EαΨP
α (7)

has a physical meaning, while in the state-universal (SU) theory its whole spectrum
corresponds to a subset of the spectrum of H. We will omit the subscript α at the
effective Hamiltonian henceforth, since the type of the formalism (SU or SS) is always
clear from the context.
In order to obtain the exact wave function from the model space projection, one has to
determine the wave operator, i.e. to construct the Bloch equation, which it has to obey.
In the framework of RSPT, the Bloch equation reads67,68

[Ω, H0]P = V ΩP − ΩPV ΩP (8)

which can be cast to the equivalent form

HΩP = ΩPHΩP ≡ ΩHeff (9)

The wave operator obtained by solving this Bloch equation is state-universal. On the
other hand, Hubač et al.37,40,41 derived a state-specific BW form of the Bloch equation

Ωα = 1 + BαV Ωα (10)

where Bα is the BW resolvent

Bα =
Q

Eα −H0

(11)

The state-specific MRCC methods can be derived from this Bloch equation or directly
from the Schrödinger equation.

2.2 Jeziorski-Monkhorst ansatz

The basis of the Hilbert-space multireference CC methods is the Jeziorski-Monkhorst
ansatz34 for the wave operator

Ωα =
M
∑

µ=1

eTα(µ)|Φµ〉〈Φµ| (12)

In principle, without any truncation of the T (µ) operators, one can still recover the exact
energy with this ansatz, however, in practice the cluster operators T (µ) are truncated
in the same way as in the single reference CCSD, CCSDT, . . . approximations. Note
also that the reference determinant Φµ plays the role of a Fermi vacuum for the excita-
tion operators in T (µ), each set of amplitudes has thus its own Fermi vacuum. For the
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aforementioned complete model space, to achieve the intermediate normalization (4), the
amplitudes in T (µ) which transform Φµ to another Φν ∈ P are set to zero.
Notice that within the JM Ansatz a given determinant from the orthogonal complement
of the model space can in general be obtained from several reference determinants via
different excitations. This inherent redundancy can, however, be resolved uniquely in
the state universal methods (see below), which provide enough equations to uniquely
determine all the amplitudes in the JM Ansatz. In the state-specific methods, one solves
this problem by imposing certain additional “sufficiency conditions” which lead to a unique
particular solution of the otherwise underdetermined system of equations. The choice of
the sufficiency conditions is not unique, however, giving rise to different SS methods like
BWCC or MkCC. In the latter case the sufficiency conditions have been chosen in such a
way to guarantee exact size-extensivity of the method.36,57,78

2.3 Effective Hamiltonian in MRCC theories

The effective Hamiltonian eigenvalue equation (7) follows from the Schrödinger equation
for state α

HΨα = EαΨα (13)

to which the wave operator definition (3) is inserted. Using the intermediate normalization
condition and expanding PΨα in the model space determinants leads to the matrix form
of the Heff eigenvalue equation

M
∑

ν

Heff
µνc

α
ν = Eαc

α
µ (14)

where for the methods based on the Jeziorski-Monkhorst ansatz and employing a complete
model space the effective Hamiltonian matrix elements are

Heff
νµ = Hµµδνµ + 〈Φν |HN(µ)eT (µ)|Φµ〉C (15)

Notice the similarity of the diagonal Heff matrix elements with the energy expression in
the single-reference CC — the only difference being that it is taken with respect to the
Fermi vacuum of the particular reference configuration.

2.4 State-universal MRCC method

The state-universal MRCC method was historically the first representative of the Hilbert-
space MRCC family.34 The amplitude equations are derived by insertion of the Jeziorski-
Monkhorst Ansatz into the Bloch equation. Two different formulations are possible, which
are however equivalent as long as complete model space is employed. The amplitude
equations in the Jeziorski-Monkhorst (connected) formulation are

〈Φϑ|HN(µ)eT (µ)|Φµ〉C ≡ 〈Φϑ|e
−T (µ)HN(µ)eT (µ)|Φµ〉 =

∑

ν 6=µ

〈Φϑ|e
−T (µ)eT (ν)|Φν〉H

eff
νµ (16)

while in the Kucharski-Bartlett (linked) formulation they become

〈Φϑ|HN(µ)eT (µ)|Φµ〉C+DC,L =
∑

ν 6=µ

〈Φϑ|e
T (ν)|Φν〉H

eff
νµ (17)

The worst problem of the state-universal method (equally present in both versions) is,
however, the poor convergence behavior due to the intruder state problem. The state-
specific methods described in the following sections represent a possible cure of this prob-
lem.
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2.5 Brillouin-Wigner MRCC method

The Brillouin-Wigner CC method, proposed by Hubač et al.,37,40,41,85–87 was historically
the first state-specific Hilbert-space MRCC approach. A review of Brillouin-Wigner meth-
ods in many-body theory has recently been published by Hubač and Wilson;88 we have
coauthored also several monography chapters dedicated to MRCC theory.89–92

Our research in the MRCC field started with an efficient implementation and numerical
assessment of the BWCC method in the Aces II program.38 We have then introduced
the size-extensivity corrections for BWCC and performed their assessment44,46,47 and
later developed also analytic gradient for the BWCCSD method.93 The corrected BWCC
has been successfully applied to several systems, ranging from model systems and bi-
atomics to mid-sized molecules: BeH2 model,94 potential curves of IBr,42 O2,

43 CaC and
ZnC,48 and NF50 molecules, singlet-triplet gap in tetramethyleneethane52 and in alkylcar-
benes,54 automerization barrier of cyclobutadiene,51 activation and reaction energy of the
Bergmann cyclization,53 ring-opening of methylenecyclopropane and singlet-triplet gap in
trimethylenmethane.56

The original derivation of the BWCC method37,87 was based on the BW Bloch equation
(10) with the BW resolvent (11). However, a more straightforward derivation is possi-
ble, where one starts directly from the Schrödinger equation and inserts the Jeziorski-
Monkhorst ansatz (12) for the Ω operator in it. The resulting amplitude equation reads

∑

µ

[

HeT (µ) − Eαe
T (µ)

]

|Φµ〉c
α
µ = 0 (18)

In the state-specific context this equation system is underdetermined, since the number of
variables in all T (µ) generally exceeds the number of available projections ∪µ〈Φϑ(µ)|. One
has to apply the sufficiency conditions, requiring that individual terms in the summation
in (18) vanish, yielding after a projection to bras excited from every reference individually

〈Φϑ(µ)|
[

HeT (µ) − Eαe
T (µ)

]

|Φµ〉 = 0 (19)

To obtain computationally practicable amplitude equations, the Hamiltonian can be ex-
pressed in the normal ordered form and the resulting terms are split to connected, dis-
connected but linked, and unlinked diagram contributions, yielding finally

(Eα −Heff
µµ)〈Φϑ|e

T (µ)|Φµ〉 = 〈Φϑ|HN(µ)eT (µ)|Φµ〉C+DC,L (20)

2.6 BWCC size-extensivity corrections

In our first study on the BWCC topic38 we have investigated the CH2 and SiH2 diradicals
as well as the twisted ethylene. The relatively larger errors found for the latter already
indicated that the size-inextensivity of BWCC cannot be neglected. This has motivated
us to develop an a posteriori size-extensivity correction,46 based on an observation that
the Brillouin-Wigner denominator coming from the resolvent (11) can be expressed in
terms of the Rayleigh-Schrödinger denominator plus a size-inextensive term

1

Dϑ(µ) + Eα −Heff
µµ

=
1

Dϑ(µ)
−

Eα −Heff
µµ

Dϑ(µ)[Dϑ(µ) + Eα −Heff
µµ]

(21)

In practical calculations the correction has been applied by dropping size-inextensive terms
originating from the second r.h.s. term in an additional iteration of cluster amplitudes
after BWCC convergence has been achieved.
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Another path towards the size-extensivity correction for BWCC, which we followed in
Ref.,47 is based on a generalized Bloch equation, which contains (9) and (10) as its special
cases. In this formalism the a posteriori size-extensivity correction corresponds to iterating
amplitude equations

λ(Eα −Heff
µµ)〈Φϑ|e

T (µ)|Φµ〉 = 〈Φϑ|HN(µ)eT (µ)|Φµ〉C+DC,L (22)

− (1 − λ)
∑

ν 6=µ

〈Φϑ|e
T (ν)|Φν〉H

eff
νµ

with λ = 1 until convergence and then performing an additional iteration setting λ =
0 to get corrected amplitudes, which are in turn used to build the corrected effective
Hamiltonian, which is then diagonalized to get the corrected energy.

2.7 Mukherjee’s MRCC method

The starting point for the derivation of the Mukherjee’s MRCC method (MkCC) is –
similarly to the BWCC method – the Schrödinger equation with the Jeziorski-Monkhorst
ansatz inserted (18). However, rather than immediately splitting the sum over µ, Mukher-
jee et. al.36 proposed to use a resolution of identity in the form

1 = eT (µ)e−T (µ) = eT (µ)(P + Q)e−T (µ)

=
M
∑

ν=1

eT (µ)|ν〉〈ν|e−T (µ) + eT (µ)Qe−T (µ) (23)

before the sufficiency conditions are applied. An essential step of the Mukherjee’s deriva-
tion is the interchange of the µ and ν summation indices, leading finally to the amplitude
equations

〈(Φµ)a...i... |e
−T (µ)HeT (µ)|Φµ〉c

α
µ +

∑

ν 6=µ

Heff
µνc

α
ν 〈(Φµ)a...i... |e

−T (µ)eTν |Φµ〉 = 0 (24)

In contrast to both state universal and Brillouin-Wigner coupled cluster methods, the am-
plitude equations (24) explicitly contain the eigenvector coefficients cαµ and are also coupled

through the effective Hamiltonian, as well as the matrix elements 〈(Φµ)a...i... |e
−T (µ)eT (ν)|Φµ〉.

Both the first and second term in Eq. (24) have been shown to be connected, which results
in a rigorous size-extensivity of the approach.36 Similarly to the SU MRCC method, a
linked form of the amplitude equations can be derived

cαµ(Eα −Heff
µµ)〈Φϑ|e

T (µ)|Φµ〉 = 〈Φϑ|HN(µ)eT (µ)|Φµ〉C+DC,L,EXT c
α
µ +

∑

ν 6=µ

〈Φϑ|e
T (ν)|Φµ〉H

eff
µνc

α
ν

(25)
which is equivalent to (24) for complete model spaces. This form of the amplitude equa-
tions has a structure analogous to the BWCC equations (20) and explicitly shows the
same Brillouin-Wigner shift of the denominators, but contains additional coupling terms
and discards DC,L terms with all indices from the active orbital set.

3 Triexcitations in the Hilbert-space MRCC

As is well known from the single reference CC, triexcitations have to be included if one
aims to achieve chemical accuracy. This section is devoted to the inclusion of triexcitations
to MRCC methods, in an iterative manner (subsection 3.1) and perturbatively (subsection
3.2).
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3.1 Full iterative inclusion of triexcitations

Our first contribution to this topic was the implementation of an approximation to the
MR BWCCSDT method,61 followed by the implementation including all terms.62 Later
we implemented and performed assessment of the MkCCSDT method in the linked formu-
lation100 and its uncoupled approximation.101 In the following subsections we will present
the BWCCSDT and MkCCSDT methods.

3.1.1 BWCCSDT

The general amplitude equations (20) are valid for any truncation of the cluster operator.
In the MR BWCCSDT method, we restrict the expansion to connected singles, doubles,
and triples T123(µ) = T1(µ) + T2(µ) + T3(µ). The T3 operator gives rise to contributions
to equations for T1 and T2 amplitudes, and additionally T3 equations

[Dabc
ijk (µ) + λ(Eα −Heff

µµ)]tabcijk(µ) = 〈Φµ
abc

ijk
|V̂N(µ)eT̂123(µ)|Φµ〉C + (26)

+λP (i/jk)P (a/bc){(Eα −Heff
µµ)tai (µ)τ̃ bcjk(µ) +

+〈(Φµ)ai |ĤN(µ)eT̂123(µ)|Φµ〉Cτ
bc
jk + tai 〈(Φµ)bcjk|ĤN(µ)eT̂123(µ)|Φµ〉C},

where Dabc
ijk (µ) is the T3 denominator

Dϑ(µ) ≡ Dab...
ij... (µ) = Fii(µ) + Fjj(µ) + . . .− Faa(µ) − Fbb(µ) − . . . (27)

The a posteriori size-extensivity correction is performed in the same manner as at the SD
level, converging all amplitudes with λ = 1 and performing an additional iteration with
λ = 0.

3.1.2 MkCCSDT

In section 2.7 we have presented two formulations of the MkCC method, which are equiv-
alent when a complete model space is employed. The first MkCCSDT implementation,
based on the connected formulation, was performed by Evangelista et al.106 We have im-
plemented the MkCC method with iterative triexcitations based on the linked formulation
in the work.100

For this purpose, the explicit form of the disconnected unlinked external terms in the
amplitude equations (25) reads for T2

〈(Φµ)abij |HN(µ)eT (µ)|Φµ〉DC,L,EXT = P (ij)P (ab)〈(Φµ)ai |e
−T (µ)HN(µ)eT (µ)|Φµ〉Ct

b
j(µ) (28)

and for T3

〈(Φµ)abcijk |HN(µ)eT (µ)|Φµ〉DC,L,EXT = P (i/jk)P (a/bc)
[

〈(Φµ)bcjk|e
−T (µ)HN(µ)eT (µ)|Φµ〉Ct

a
i (µ)

+ 〈(Φµ)ai |e
−T (µ)HN(µ)eT (µ)|Φµ〉C ×

× (tbcjk(µ) + tbj(µ)tck(µ) − tcj(µ)tbk(µ))
]

,

where the terms with all bra indices from the active space are omitted. The connected
term and the l.h.s. of (25) are identical to BWCC, while the last term of (25) reduces to
products of the T (ν) amplitudes re-indexed with respect to the Fermi vacuum |Φ(µ)〉.
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3.1.3 Uncoupled approximation to MkCCSDT

In the uncoupled version of the MkCC method proposed by Mukherjee et. al.,107 the

coupling term 〈Φϑ|e
−T (µ)eT (ν)|Φµ〉 is replaced by 〈Φϑ|e

−T (µ)eT
′

ν
(µ)|Φµ〉, where T

′

ν(µ) corre-
sponds to those components of T (µ) which give non-zero when acting on Φν , i.e. excita-
tions from orbitals occupied in both Φµ and Φν into orbitals unoccupied in both Φµ and
Φν .

T
′

ν(µ) =
∑

i···∈occ(µ)∩occ(ν)

∑

a···∈virt(µ)∩virt(ν)

t
′

ν(µ)a...i... a
†
a . . . ai . . . (29)

In order to evaluate the couplings, we introduce the operator T̄ (µ) as the complement to
T

′

(µ)

T̄ν(µ) = T (µ) − T
′

ν(µ) (30)

which obviously annihilates the Fermi vacuum Φν

T̄ν(µ)|Φν〉 = 0. (31)

In terms of the corresponding amplitudes, we may write

ta...i... (µ) = t
′

ν(µ)a...i... + t̄ν(µ)a...i... . (32)

We have implemented this approximation at the SDT level; implementation details and
numerical assessment of the uncoupled MkCCSDT method can be found in the paper.101

It has been shown that the effects of the uncoupled approximation are almost negligible
when the small active space CAS(2,2) is employed, while they can grow (as expected from
the nature of the approximation) for larger model spaces.

3.2 Perturbative triexcitations

Similarly to the single-reference case, the scaling of the methods with iterative triexci-
tations is prohibitive even for moderately sized molecules. To avoid this cost, pertur-
bative approximations have been introduced and have achieved an enormous success at
the single-reference level, CCSD(T) being often called a “golden standard” by computa-
tional chemists. We have thus worked on a perturbative inclusion of triexcitations in the
multireference schemes, starting the with BWCCSD(T) method,63 and later developing
the MkCCSD(Tn)64 and MkCCSD(Tu)65 methods. Application of the BWCCSD(T) and
MkCCSD(T) methods to a study of polycyclopentanes108 and spiropentane109 have also
been published.

3.2.1 SU CCSD(T)

The first reported development of noniterative triples for Hilbert space MRCC methods
was done by Balková and Bartlett110 in the state universal formulation. In their ap-
proach, after the SUCCSD equations are solved, the approximate triexcited amplitudes
are obtained from the equation

tabcijk(µ) =

〈(Φµ)abcijk |VN(µ)T2(µ)|Φµ〉C −
∑

ν 6=µ

[〈(Φµ)abcijk |T2(ν)|Φν〉H
eff
µν ]C

Dabc
ijk (µ)

, (33)

The perturbative correction is then performed on the matrix elements of the effective
Hamiltonian (15). Since its diagonal elements are analogous to the single reference energy
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diagrams, the diagonal corrections become a straightforward generalization of the single-
reference CCSD(T), which reads

Heff
µµ(T) = Heff

µµ(CCSD) + E
[4]
T (µ) + E

[5]
ST (µ) + E

[4]
ST (µ) (34)

The off-diagonal elements of the effective Hamiltonian are calculated at the CCSDT-1
level using the linear contribution of T3 to both T1 and T2 equations

Heff
νµ(T) = 〈Φν |HN(µ)eT123(µ)|Φµ〉

CCSDT−1
C = 〈Φν |HN(µ)(eT12(µ) + T3(µ))|Φµ〉C. (35)

The CCSDT-1 level was chosen, since fourth order CCSD(T) terms can be viewed as
the ones generated by the first iteration of CCSDT-1. Finally, the corrected energy is
obtained by diagonalization of the triples–corrected effective Hamiltonian.

3.2.2 BWCCSD(T)

When developing the BWCCSD(T) method,63 we have decided to follow an approach
similar to the state-universal case, in particular to perform the corrections from connected
triples also via the matrix elements of the effective Hamiltonian. The corrections to the
diagonal Heff elements consist formally of the same perturbative terms given by (34) as
in the SU method. However, in contrast to the SU method, the triexcited amplitudes are
obtained in a different way in the BWCC context

tabcijk(µ) =
〈(Φµ)abcijk |VN(µ)T2(µ)|Φµ〉C

Dabc
ijk (µ)

, (36)

which reads explicitly in the integrals and amplitudes

tabcijk =

∑

e P (i/jk)P (a/bc)taejk〈bc||ei〉 −
∑

m P (i/jk)P (a/bc)tbcmi〈jk||ma〉

Dabc
ijk

(37)

Notice that we neglect the effect of nondiagonal Fock matrix elements in the T3 equation,
which would otherwise require an iterative solution of T3 amplitudes.111 Unfortunately it
seems that the solution used in single reference theory, the semicanonical orbitals, cannot
be generalized for MR cases, which leads to a non-invariance of the resulting method
with respect to occupied-occupied and virtual-virtual rotations. This problem is shared
by all the MR perturbative triples methods discussed here, however, the numerical effects
have been found negligible in our study.64 Numerical results of an assessment of the
BWCCSD(T) method can be found in the paper,63 where it was shown that for the three
lowest lying states of the oxygen molecule the BWCCSD(T) method delivered results in
a good agreement with iterative BWCCSDT ones.

3.2.3 MkCCSD(Tn)

The first attempt to include noniterative triexcitations in the MkCC method has been re-
ported in our work.64 We decided to neglect the coupling terms in (24) for the approximate
T3 amplitudes. As a justification we considered that in the single reference CCSD(T),
only the term linear in T2 is included at the right hand side of the T3 equation, while
the MkCC coupling terms in the T3 equation contain either t1 or t3 cluster amplitudes
as a factor. It is thus a plausible approximation in the MRCC T3 equation to neglect
them as well. After this approximation, only the terms in T3 equations that contain a
factor of Cα

µ are left and the eigenvector coefficient, if nonzero, can be eliminated from
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the equation. The T3 amplitude equation has thus the same form as the BWCCSD(T)
one (36), differing only in that MkCCSD converged amplitudes are employed here. The
drawback of this approximation is that the intruder state problem can emerge when Dabc

ijk

in (36) approaches zero, as will be discussed in the next section.
As in the previous approaches, the diagonal Heff elements are corrected according to eq.
(34), the off-diagonal ones again at the CCSDT-1 level by eq. (35). The scheme is thus
very similar to the MR BWCCSD(T) method, except for using converged MkCCSD T1

and T2 amplitudes as input for the (T) correction, of course.

3.2.4 MkCCSD(Ti)

Somewhat later a different approach has been presented by Evangelista et. al.,114 where
corrections to the energy are explicitly evaluated, rather than corrections to Heff

µν . Their
derivation, which is based on a perturbative analysis of the MkCC Lagrangian,114–116 can
be viewed as a multireference generalization of the Λ-CCSD(T)117–120 approach.
In MkCCSD(Ti), the amplitude equation for approximate T3 includes the linear coupling
terms

tabcijk(µ) =

〈(Φµ)abcijk |VN(µ)T2(µ)|Φµ〉 +
∑

ν 6=µ

tabcijk(ν/µ)Heff
µν

cαν
cαµ

Dabc
ijk (µ) + (Eα −Heff

µµ)
. (38)

Notice that MkCCSD(Ti) is resistant to intruders, due to the Brillouin-Wigner like de-
nominator, but due to the presence of tabcijk(ν/µ) in the equation for tabcijk(µ) the solution
has to be performed iteratively, which is a considerable disadvantage.

3.2.5 MR MkCCSD(Tu)

The main motivation behind the development of the new approach which we presented
in,65 denoted MR MkCCSD(Tu), was to avoid the singularities in the MR MkCCSD(Tn)
without the need for an iterative procedure to solve the triples equation as in MR
MkCCSD(Ti). To achieve that, the uncoupled approximation described in section 3.1.3
can be employed to simplify the triples equation, which after moving linear T3 terms to
the left-hand side gives

tabcijk(µ)

[

Dabc
ijk (µ) +

∑

ν 6=µ

†

Heff
µν

Cα
ν

Cα
µ

]

= 〈(Φµ)abcijk |VN(µ)T2(µ)|Φµ〉C − (39)

−
∑

ν 6=µ

[

P (i/jk)P (a/bc)t̄ν
a
i (µ)t̄ν

bc
jk(µ) −

− P (ijk)t̄ν
a
i (µ)t̄ν

b
j(µ)t̄ν

c
k(µ)

]

Heff
µν

Cα
ν

Cα
µ

where † at the sum indicates that only terms where at least one of the i, j, k, a, b and c
orbitals has a different occupation in the µ-th reference than in the ν-th one are included
in the summation. Considering the triples equation (39), two advantages are observed.
First notice that it yields tabcijk(µ) in a single step rather than iteratively as in (38). Second,
compared to the equation (36), this amplitude equation includes a denominator shift and
is thus insensitive to intruder states. Numerical assessment of the approach presented in
this section was performed on the BeH2 model and on the tetramethyleneethane (TME)
molecule.65 It has been verified, that the singularities on the BeH2 potential energy curve
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present in MR MkCCSD(Tn) were removed by the new MR MkCCSD(Tu) method, which
yields a smooth curve very close to the MR MkCCSD(Ti) or MR MkCCSDT-1 ones. The
study of the TME molecule shows that to achieve even a qualitatively correct description
of the singlet state, triexcitations have to be included in the MkCC method.

4 Illustrative numerical results

This section of the Thesis gives illustrative numerical examples of the performance of the
state-specific Hilbert-space MRCC methods. The first example is the molecular oxygen,
where a comparison with accurate spectroscopic data can be performed. While its ground
state can be treated with single-reference methods, a correct description of the low-lying
excited states requires a multireference treatment. The second example is the BeH2 model
system, which might seem somewhat artificial to a chemist, but it represents a stringent
test of multireference methods. In particular, the performance of various versions of
the MkCC method with non-iterative triples will be assessed on this example. The last
example is the tetramethyleneethane molecule, which is a typical diradical with a close
lying singlet and triplet state. Due to its multiconfigurational character, single-reference
methods fail to describe its singlet state correctly and yield qualitatively incorrect values
of the singlet-triplet energy gap, which can be cured by the multireference treatment.
Many other numerical results can be found in the papers attached to the Thesis.

4.1 Oxygen

Three electronic states, the ground state X3Σ−
g and the first two excited ones a1∆g and

b1Σ+
g have been studied. The model space was spanned by four reference configurations

formed within the active space of πg anti-bonding orbitals occupied by two electrons. Due
to spatial symmetry, the active space is complete.
The inclusion of triples lowers the vibrational frequency and elongates the bond length for
both MR MkCC and MR BWCC methods. The change of the vibrational frequency can
be almost 100 cm−1, indicating the enormous importance of triexcitations. For oxygen
molecule the spectroscopic constants obtained using triples are close to experimental data,
confirming the importance of the triexcitations. The results obtained for bond lengths
and vibrational frequencies show that the MR BWCC method is also able to yield spec-
troscopic constants correctly. However, the MR MkCC gives substantially better results
for vertical excitation energies compared to MR BWCC, which can be attributed to its
exact size-extensivity.

4.2 BeH2

The BeH2 model which describes the insertion of a beryllium atom to the H2 molecule,
confined to the C2v symmetry, was introduced by Purvis et. al.129 in 1983 to study
single reference coupled cluster methods. Later it became popular in the study of various
multireference methods.11,36,78,94,130–133 We employed the modified double ζ basis and
CAS(2,2) orbitals as reported in,114 in order to make a comparison with this work possible.
The deviations of total energy calculated by various MkCC approaches from FCI, are
shown in Fig. 1. For all the approaches, the error curve has the same qualitative char-
acter: the deviations are relatively small in the single reference region, whereas in the
multireference region the error grows to approximately −1mEh. As reported in,114 the
MkCCSD(Tn) method suffers from the intruder state problem for x in the range between
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Figure 1: BeH2: MkCC energy differences with respect to FCI
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0.5 bohr and 1.5 bohr. Red, green, black and blue curves show errors of the MkCCSD(Tn),
MkCCSD(Tu), MkCCSD(Ti), and MkCCSDT-1 methods, respectively, with respect to
the FCI reference. The singularities exhibited by MkCCSD(Tn) near x ≈ 0.7, 1.2 and 1.4
are removed in MkCCSD(Tu). The reason for this comes from the denominator shift in
equation 39, which is identical to the BW shift for amplitudes with at least one active
index. Furthermore, we can see that the MkCCSD(Tu) difference curve closely follows the
MkCCSDT-1 one for x up to 2 bohr, in contrast to the MkCCSD(Ti). This difference can
be explained by the absence of the nonlinear coupling terms (especially the T1T2 terms )
in the MkCCSD(Ti) method.

4.3 Singlet-Triplet Separation in the Tetramethyleneethane

Tetramethyleneethane (TME) is a prototype of an unusual family of reactive interme-
diates called disjoint diradicals. In 1970, when P. Dowd reported preparation of TME
and EPR its spectrum,134 controversy started about its ground state, leading to many
experimental and ab initio studies.52,135,135–143 Clifford et. al.140 using the gas-phase
negative ion photoelectron spectroscopy, revealed that the singlet state of TME is about
2 kcal mol−1 below the triplet state, which was inconsistent with the previous matrix
isolation EPR studies. They suggested that this discrepancy can be due to the fact that
the matrix locks the TME at the triplet equilibrium structure at which singlet state is
above the triplet state. Employing spin-restricted open-shell Kohn-Sham (ROKS) and
spin-restricted ensemble-referenced Kohn-Sham (REKS), Filatov and Shaik142 found that
TME has a minimum at D2d geometry, where the triplet state is about 3 kcal mol−1 above
the singlet. Employing difference dedicated configuration interaction method (DDCI), Ro-
driguez et. al.143 found that the singlet state is more stable than the triplet one for any
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Figure 2: C6H8: Singlet-triplet gap
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The singlet-triplet gap was obtained using a (cc-pVDZ) basis set and b (cc-pVTZ′) is
shown here.

conformation, but the energy difference decreases up to 0.29 kcal mol−1 for the structure
of the triplet minimum.
The singlet state of the TME diradical has a multireference character, while the triplet
state is single reference in nature. The computed singlet-triplet gaps are shown in Figure
2. At all levels of theory, the ST curves have a very similar shape, with a single minimum
near 45 degrees. However, the position of these curves varies significantly with the method
used. The BWCCSD curve lies between 1 and 4 kcal mol−1, which is in a good agreement
with experiment and with previous study52 which employed MP2 geometries. However,
the inclusion of perturbative triples increases the gap to 11 − 14 kcal mol−1. Conversely,
MkCCSD method performs rather poorly, predicting the wrong order of the two states.
Inclusion of triples, both iterative and noniterative, increases the gap by approximately
7 kcal mol−1, yielding values of ST gap between 2 and 6 kcal mol−1. The MkCCSD(Tu)
results lie very close to their MkCCSDT-1 counterparts. At the twisting angle 45◦, the
gap obtained was 2.6 kcal mol−1 and 2.4 kcal mol−1 for MkCCSD(Tu)/cc-pVDZ and
MkCCSDT-1/cc-pVDZ, respectively. The relatively good performance of BWCCSD can
be explained by a fortuitous compensation of errors caused on one hand by insufficient
description of the dynamical correlation and on the other hand by the inaccuracy of the
a posteriori size-extensivity correction. The difference between MkCCSD(Tu)/cc-pVDZ
and MkCCSD(Tu)/cc-pVTZ′ is less than 0.9 kcal mol−1 at all twisting angles, confirming
that the basis set effects are relatively minor.
The results obtained by MR MkCC with inclusion of triples are in agreement with the gas-
phase negative ion photoelectron spectroscopy results by Clifford et. al.140 This suggests
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that the singlet state is more stable than the triplet one for any conformation with the
energy gap minimum near 45◦, although the limited size of the employed basis sets does
not allow to claim this with certainty.
The study of the TME molecule shows that to achieve even a qualitatively correct de-
scription of the singlet state, triexcitations have to be included in the MkCC method. The
good agreement of previous BWCCSD calculations on TME52 with experiment was thus
caused by a fortuitous error cancellation between the inaccuracy of BWCC size-extensivity
correction and the lack of dynamical correlation.
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5 Conclusions and outlook

In this thesis we gave an overview of our work on the multireference coupled cluster
field. We have been mainly involved in the development of Brillouin-Wigner MRCC
method and of the Mukherjee’s MRCC method. We have developed several versions of
these methods and implemented them in the ACES II program package, recently also in
the CC-R12 and NWCHEM programs. We have performed performance assessment of
the developed methods and several application calculations on systems exhibiting static
correlation. Due to its exact size-extensivity, the Mukherjee’s method seems to be superior
to the Brillouin-Wigner one, where it can be only be achieved approximately a posteriori
size-extensivity correction. Unfortunately, MkCC method usually converges substantially
slower than BWCC. MR MkCCSDT method gives the most accurate results from the
methods investigated, however, the computational costs involved prevent its application
to larger systems. Presently, the MR MkCCSD(Tu) method seems to be an adequate
approach for accurate calculations of molecules exhibiting static correlation. It should
perform similarly well as the CCSD(T) method does for systems dominated by a single
Slater determinant, as long as the model space does not get too large. We have verified
this behavior on several molecules with diradical character, where the active space consists
of the HOMO-LUMO pair of orbitals. For such systems the MkCC method is already
practically applicable and can be almost routinely employed. However, transition metal
compounds or triple bond dissociation are not accessible yet since the accuracy of the
MkCC method deteriorates for large model spaces, unless active tri- and tetraexcitations
are taken into account. Moreover, its non-invariance to active orbital rotations represents
another unpleasant feature, which hampers the widespread applicability. It can thus be
predicted that the development of MRCC methods will remain subject of ongoing research
by several groups worldwide.
We plan to continue our research on the multireference CC field in the near future, ad-
dressing several interesting topics. Presently we are working on the combination of the
explicitly correlated (R12/F12) approach with the MRCC methods, which significantly
speeds up the basis set convergence. Another direction of our effort is parallelization of
the MRCC codes,145 which should pave the way towards calculations of large molecules,
efficiently employing modern supercomputers.

18



References
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[91] J. Paldus, J. Pittner, and P. Čársky, in Recent Progress in Coupled Cluster Methods,
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[92] S. Kedžuch, O. Demel, J. Pittner, and J. Noga, in Recent Progress in Coupled
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State-specific Brillouin-Wigner multireference coupled cluster study of the F2 molecule:
Assessment of the a posteriori size-extensivity correction
J. Molec. Struc. (Theochem) 547, 239–244 (2001)

6. Pittner J., Demel O., Čársky P., Hubač I:
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On the ground states of CaC and ZnC: a multireference Brillouin-Wigner coupled
cluster study
J. Chem. Phys. 117, 9733–9739 (2002)

9. Pittner J.:
Continuous transition between Brillouin-Wigner and Rayleigh-Schrödinger pertur-
bation theory, generalized Bloch equation, and application to the Hilbert space mul-
tireference coupled cluster method
J. Chem. Phys. 118, 10876–10889 (2003).
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3. Bonačić-Koutecký V., Fuchs C., Pittner J., and Koutecký J.:
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9. Bonačić-Koutecký V., Češpiva L., Fantucci P., Fuchs C., Koutecký J., and Pittner J.:
Quantum Chemical Interpretation of Optical Response of Small Metal Clusters
Comments Atomic Mol. Phys. 31, 233–290 (1995)

28



10. Vezin B., Dugourd Ph., Bordas C., Rayane D., and Broyer M., Bonačić-Koutecký V.
and Pittner J., Fuchs C., Gaus J., Koutecký J.:
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Theoretical Exploration of Stationary and of Ultrafast Spectroscopy of Small Clusters
Appl. Phys. B 71, 343–349 (2000)
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Pittner J.:
Different approaches for the calculation of electronic excited states of nonstoichio-
metric alkali halide clusters: The example of Na3F
J. Chem. Phys. 121, 9898-9905 (2004).

50. Kardahakis S., Pittner J., Čársky P., Mavridis A.:
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The Quantum Chemical Approach in Metal clusters, pp. 29–70, Ekardt W. (ed.),
Wiley, New York (1999)
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