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Summary

Let Ω ⊂ Rn be a domain. We study a certain class of mapping f :
Ω→ Rn that can serve as a class of deformations in nonlinear elasticity.
These kind of problems were originally studied by Ball, Šverák, Müller,
Spector, Fonseca and many others.
The natural problems studied in this area are the optimal condition

that guarantee continuity (material cannot break and no cavities are
created), null sets are mapped to null sets (material cannot be created
from nothing), invertibility (interpenetration of matter), properties of
the inverse mapping (backward deformation should be nice) and many
others.
The monograph Lectures on Mappings Distortion written jointly with

Pekka Koskela is an self-contained introduction to this field. The mate-
rial is based on the graduate level courses that the authors have given
at the University of Michigan, University of Jyväskylä and at Charles
University in Prague and on short courses by the authors at summer
schools in Ischia and at the de Giorgi center in Pisa.
The book can serve as a reading material on the graduate level or as

a reference book to the researchers in the area. It contains also recent
results in the field and some of them were obtained by the author of the
thesis together with his coauthors.
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Resumé

Nechť Ω ⊂ Rn je oblast. Studujeme třídu zobrazeníf : Ω→ Rn, která
může sloužit jako třída deformací v teorii nelinární elasticity. Tyto prob-
lémy byly původně studovány matematiky jako Ball, Šverák, Müller,
Spector, Fonseca a mnoha jinými.
Přirozené problémy v této oblasti jsou nalezení optimálních podmínek,

které zaručí, že zobrazení je spojité (materiál se netrhá a uvnitř nevzni-
kají dutiny), množiny nulové míry se zobrazí na množiny nulové míry
(nový materiál nemůže vzniknout z ničeho), existence inverzního zo-
brazení (dvě části tělěsa se nemohou zobrazit do téhož místa), vlastnosti
inverzního zobrazení (zpětná deformace by měla být hezká) a mnoho
jiných.
Monografie Lectures on Mappings Distortion napsaná spolu s Pekkou

Koskelou tvoří samostatný ú samostatný a nezávislý úvod do této prob-
lematiky. Materiál vzniknul na základě přednášek obou autorů na Uni-
versity of Michigan, University of Jyväskylä, na Karlově Univerzitě v
Praze a na krátkých minikurzech, které autoři přednášeli na letní škole
na Ischii a na de Giorgi center v Pise.
Kniha může sloužit jako samostatná četba na úrovni PhD studentů,

nebo i jako referenční kniha pro jiné odborníky v dané oblasti. Obsahuje
také mnoho nedávných výsledků a některé z nich byly dosaženy autorem
spolu se spoluautory,
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1. Introduction
In 1981, J.M.Ball [3] established a class of mappings that can serve

as a class of deformations in nonlinear elasticity. Nowadays the whole
theory is very rich and we recommend the monographs [21] and [1] for
history, references and further motivation.
We can view a domain Ω ⊂ Rn as a solid body in space and our

mapping f : Ω → Rn as a deformation of the body Ω to f(Ω). There
are several natural questions one can ask.

• Is f continuous?
• Does f map sets of zero measure to sets of zero measure?
• Is the mapping one-to-one? Does the inverse map f−1 exist?
• What are the properties of f−1? (Is the reverse deformation rea-
sonable?)

It would be possible to consider many other questions, but we would
like to concentrate on these in detail. The first question of continuity
means from the physical point of view that the material does not break
down into pieces and that no holes are created inside the material during
our deformation.
The second question can be interpreted that the new material cannot

be created or lost during our deformation. There are continuous and
invertible mappings that map a set of measure zero (i.e. zero volume)
to a set of positive measure or a set of positive measure to a set of
measure zero. However these mappings are not suitable for developing a
reasonable theory because it does not seem to be natural that something
negligible can be mapped to something big. From a mathematical point
of view this assumption is also crucial, because it is closely related with
the validity of the substitution formula for the integral and it is one the
main tools in this area.
A basic requirement of continuum mechanics is that interpenetration

of matter does not occur, i.e. the mapping f(x) giving the position of a
particle is invertible. It means that it is not possible that two different
points are mapped to the same point. Therefore in any reasonable theory
we expect that the inverse of our mapping exists. The inverse map can
be viewed as a backward deformation to the original state and it is
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natural to expect that if the original map is nice that the inverse map
will posses also some good properties.
These questions of course make sense also in other dimensions than

n = 3 and they are usually studied for mappings f : Ω → Rn where
Ω ⊂ Rn. The situation in R2 is sometimes simpler and can be used as
model example.
Let us now introduce the class of mappings that is usually used now in

this context. We assume that the reader is familiar with Sobolev space
W 1,1(Ω,Rn), i.e. mappings in L1 whose distributional derivatives are
also in L1.

Definition 1.1. We say that a mapping f : Ω → Rn on an open
connected set Ω ⊂ Rn has finite distortion if f ∈ W 1,1

loc (Ω,Rn), Jf ∈
L1

loc(Ω) and there is a function K : Ω→ [1,∞] with K(x) <∞ almost
everywhere such that

(1) |Df(x)|n ≤ K(x)Jf(x) for almost all x ∈ Ω.

For mappings of finite distortion we can define the optimal distortion
function as

Kf(x) :=

{
|Df(x)|n
Jf (x) for all x ∈ {Jf > 0},

1 for all x ∈ {Jf = 0}.

Let us note that that the definition (1) is equivalent to the assumptions
that Jf(x) ≥ 0 a.e. (mapping does not change orientation) and to the
assumption that |Df(x)| vanishes a.e. in the zero set of the Jacobian
{x : Jf(x) = 0}.
The condition (1) is a relaxation of the definition of quasiregularity (or

quasiconformality) that requires that infinitesimal circles be mapped to
infinitesimal ellipses whose eccentricities Kf(x) are uniformly bounded.
Thus the study of mappings as in previous definition can be viewed as
a generalization of the study of quasiregular mappings, also called map-
pings of bounded distortion. In a sense, one relaxes the boundedness of
the distortion to integrability of the distortion. Mappings of bounded
distortion are continuous, map sets of measure zero to sets of measure
zero, and they are either constant or locally bounded to one. Also, a
mapping of bounded distortion that is injective close to the boundary is
necessarily a homeomorphism and the inverse is also of bounded distor-
tion. Thus this class of mappings has the properties that are desirable
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from the point of view of nonlinear elasticity. Te class of quasiregular
mappings was introduced by Yu.Reshetnyak in 1967 [35]. We recom-
mend the monographs [35], [36] and [27] for an interested reader.
In the next chapters we relax the assumption K ∈ L∞ and we show

that mappings of finite distortion have properties similar to those of
mappings of bounded distortion. We usually have two kinds of positive
results. We assume that f is in the nice Sobolev space W 1,n and then
we require some mild assumptions on the distortion like integrability or
only finiteness almost everywhere. Alternatively, we assume only that
f ∈ W 1,1 but then we usually need much stronger assumptions on the
distortion, like exp(λKf) ∈ L1 for some λ > 0.
In the case of bounded distortion in the complex plane, one has the

associated Beltrami equation
∂f(z) = µ(z)∂f(z),

where one assumes that ‖µ‖L∞ < 1. Each mapping of bounded dis-
tortion is a solution to this equation and each such an equation with
‖µ‖L∞ < 1 has a homeomorphic solution of bounded distortion. It is
possible to show the existence of solutions under weaker assumptions
(see [1] for exact statement and proofs), like for those compactly sup-
ported µ with exp( p

1−|µ(z)|) integrable for some p; this corresponds to
the class of mappings whose distortion is not necessarily bounded but
exp(λKf(x)) ∈ L1 for some λ > 0.

2. Summary of the book
In this section we give the summary of the book. This section is

divided into six subsections, each corresponds to some chapter of the
monograph. In each Subsection we will point out the original results
that were obtained by the author in this area. For the detailed reference
of the sources we point the readers attention to the Remarks at the end
of the Chapters in the book. There he may also find 26 Open problems
in the area.
2.1. Continuity.
It is a well-known fact that each function in the Sobolev space W 1,p

has a continuous representative if p > n but not necessarily for any
p ≤ n.
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For mappings of finite distortion we can consider the following exam-
ple:

Example 2.1. For x ∈ B(0, 1) \ {0} let us set

f(x) = x+
x

|x|
(and define f(0) = 0). Then f is a mapping of finite distortion such
that f ∈ W 1,p(B(0, 1),Rn) for all p < n, but f is not continuous at the
origin, i.e. no representative of f is continuous at the origin.

Proof. Clearly f(x) = x
|x|(|x| + 1) maps spheres centered at the origin

onto similar spheres and it is a diffeomorphism from B(0, 1) \ {0} onto
B(0, 2) \ B(0, 1). Using elementary computations it is not difficult to
check that

|Df(x)| = 1 +
1

|x|
and Jf(x) =

(
1 +

1

|x|

)n−1
.

It follows that f ∈ W 1,p for all p < n, Jf ∈ L1(B(0, 1)) and, since
Jf > 0 almost everywhere, that f has finite distortion. On the other
hand, we cannot extend f continuously to the origin since the sphere
Sn−1(0, ε) is mapped to the sphere Sn−1(0, 1 + ε). �

From the previous example we know that we cannot hope for a positive
result if we only know that a mapping f of finite distortion belongs to
W 1,p for some p < n. The following result shows that in the limiting
situation f ∈ W 1,n mappings of finite distortion have better properties
than general Sobolev mappings.

Theorem 2.2. Let Ω ⊂ Rn be open and let f ∈ W 1,n
loc (Ω,Rn) be a

mapping of finite distortion. Then f has a continuous representative.

Moreover, we can relax the regularity assumptions on f if we require
additional restrictions on the integrability of the distortion function.
Later in this chapter it is shown that under the same assumption we
obtain also differentiability almost everywhere for the continuous repre-
sentative of these mappings.

Theorem 2.3. Let Ω ⊂ Rn be open and let f : Ω→ Rn be a mapping
of finite distortion. Suppose that there is λ > 0 such that exp(λK) ∈
L1

loc(Ω). Then f has a continuous representative.
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Again the assumption exp(λK) ∈ L1 cannot be essentially relaxed
and there is a simple example given in the book.
Now we give some brief idea of the proof of these two main theorems

in this Section. First it is necessary to show that mappings of finite
distortion in this class are in some sense monotone, i.e. the nonnegativity
of the Jacobian implies that some sort of diam f(B) ≤ diam f(∂B) for
all balls B ⊂ Ω. In fact we show that they are weakly monotone, which
is some weak version of this inequality suitable for Sobolev mappings.
In order to achieve that we first need to show that under our regularity
assumption we know that the Jacobian is integrable and equals to the
distributional Jacobian, i.e.∫

Ω
ϕJf = −

∫
Ω
f1J(ϕ, f2, ..., fn) for all ϕ ∈ D(Ω) .

This crucial identity is the main place where we need our regularity
assumptions and it is the main tool for establishing many other results
in this area. This identity is due to Greco [10] and Iwaniec and Sbordone
[22]. These results are inspired by the earlier result of Müller [32] who
showed that Jf ∈ L1 logL if f ∈ W 1,n satisfies Jf ≥ 0.
The results of this Chapter were established mostly before the au-

thor started to work on this topic. There are later results about the
optimal modulus of continuity for mappings of finite distortion with
exp(λK) ∈ L1. In [5] he showed with his student D. Campbell that this
modulus of continuity is indeed the optimal one (see Theorem 5.19 in
the monograph) which was a bit surprising.

2.2. Openness and Discreteness.
One of the crucial properties in the models on nonlinear elasticity is

that there is no interpenetration of matter. This corresponds to the
fact that two parts of the body cannot be mapped to the same place.
From the mathematical point of view this means that the map should
be one-to-one and thus invertible.
Let us consider the conformal mapping f(z) = z2 in the complex plane

which can be identified with R2. We know that f ∈ C∞ is conformal
and hence its distortion satisfiesK ≡ 1. On the other hand each nonzero
point has two preimages and this mapping is not invertible. This shows
that even for analytically very nice mappings we cannot conclude that
the inverse exists without some extra information.
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As a first step one usually attempts to conclude that the mapping in
question is open and discrete. Note that for example homeomorphisms
are automatically open and discrete.

Definition 2.4. Let Ω ⊂ Rn be a domain. We say that the mapping
f : Ω → Rn is open if f(U) is open for each open set U ⊂ Ω. The
mapping f is called discrete if the preimage of each point f−1(y) is a
discrete set, i.e. it does not have an accumulation point in Ω.

Each open and discrete map which equals to a homeomorphism close
to the boundary is necessarily a homeomorphism. Moreover, an open
and discrete mapping is locally invertible in neighborhoods of most of the
points by the following result of Chernavskii [6]. Recall that the branch
set of a map is the set of points where it fails to be locally injective.

Theorem 2.5. Let Ω ⊂ Rn be a domain and let f : Ω → Rn be
a discrete and open mapping. Then the topological dimension of the
branch set Bf satisfies

dimBf = dim f(Bf) ≤ n− 2 .

The following examples show that openness and discreteness may fail
even for Lipschitz mappings if the degree of integrability of the distortion
is not high enough.

Example 2.6 (Ball). Let f : (−1, 1)2 → R2 be defined by
f(x, y) = [x, |x|y] .

Then f is not open and discrete since f−1([0, 0]) = {0} × (−1, 1). The
derivative of f is

Df(x, y) =

(
1 0
±y |x|

)
for x 6= 0 and therefore it is easy to see that f is Lipschitz and Jf(x, y) =
|x| ≥ 0. Hence it is a mapping of finite distortion and its distortion for
small enough |[x, y]| equals to

Kf(x, y) =
1

|x|
and it is integrable with any power strictly less than 1.
Analogously, the mapping f : (−1, 1)n → Rn defined as

f([x1, . . . , xn]) = [x1, . . . , xn−1,
√
x2

1 + . . .+ x2
n−1xn]
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is a Lipschitz mapping of finite distortion and its distortion for small
enough |x| satisfies

Kf(x) =
1√

x2
1 + . . .+ x2

n−1

and thus Kf(x) ∈ Lp for every p < n− 1. However, f is not open and
discrete since f−1([0, . . . , 0]) = {0}n−1×(−1, 1). Moreover, it is possible
to extend this mapping to a Lipschitz mapping f̂ : (−2, 2)n → Rn so that
the restriction of f̂ to a neighborhood of the boundary, f̂ |(−2,2)n\[−1,1]n,
is a homeomorphism.

The following positive results for continuous mappings of finite dis-
tortion are the main result of the chapter. Recall that the existence of
continuous representative in this setting follows by Theorem 2.2. and
Theorem 2.3.

Theorem 2.7. Let Ω ⊂ Rn be open and let f ∈ W 1,n
loc (Ω,Rn) be a

continuous mapping of finite distortion such that Kf ∈ Lp(Ω) for some
p > n− 1 or Kf ∈ L1(Ω) for n = 2. Then f is either constant or both
open and discrete.

Theorem 2.8. Let Ω ⊂ Rn be open and let f : Ω → Rn be a con-
tinuous mapping of finite distortion. Suppose that there is λ > 0 such
that exp(λKf) ∈ L1

loc(Ω). Then f is either constant or both open and
discrete.

In order to show these results one must use the theory of the topolog-
ical degree. This chapter contains an independent introduction to the
theory of topological degree suitable for people in mathematical analysis,
i.e. avoiding Algebraic Topology and using properties of integrals and
Jacobians. In the last part of the chapter we also show basic properties
of open and discrete mappings like local boundedness of the multiplicity
(= number of preimages) or the fact that each open and discrete map-
ping which equals to a homeomorphism close to the boundary is in fact
a global homeomorphism.
It has been an open problem posed already in [23] if the positive con-

clusion of Theorem 2.7 holds in higher dimensions also in the borderline
caseK ∈ Ln−1. If we moreover know that f equals to a homeomorphism
close to the boundary (or that the multiplicity is essentially bounded),
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then the positive answer was established by Hencl and Malý [16] and
Hencl and Koskela [13]. On the other hand, in a recent result of Hencl
and Rajala [19] it was shown that there is even a Lipschitz mapping
with K ∈ Ln−1 which fails to be discrete and thus the result fails in
general. It is still not known if this assumption guarantees openness.

2.3. Images and preimages of null sets.
In this chapter we mainly study when the null sets are mapped to null

sets.

Definition 2.9. Let Ω ⊂ Rn be open. We say that f : Ω→ Rn satisfies
the Lusin (N) condition if

for each E ⊂ Ω such that |E| = 0 we have |f(E)| = 0 .

There are two major motivations for the study of this property. From
the physical point of view this property corresponds to the fact that
our deformation f of the body in Rn cannot create new material from
’nothing’. This would be unnatural in any physically relevant model and
hence we would like to know conditions which exclude such pathological
behavior. To study conditions like that one needs to know obstacles and
the natural counterexamples.
From the mathematical point of view this property is crucial for the

validity of the change of variables formula which is an essential tool in
this area. In fact, the Area Formula holds for Sobolev mappings if and
only if f satisfies condition (N).
We study the validity of the Lusin (N) condition both in the setting

of general Sobolev mappings and in the setting of mappings of finite
distortion. We show that the Lusin (N) condition is satisfied for general
Sobolev mapping in the supercritical case p > n.

Theorem 2.10. Let Ω ⊂ Rn and p > n. Suppose that f ∈ W 1,p(Ω,Rn)
is continuous. Then f satisfies the Lusin (N) condition.

On the other hand we construct a mapping f ∈ W 1,n((0, 1)n, (0, 1)n)
which maps a line segment to the whole cube (0, 1)n. The situation is
slightly better for a homeomorphisms in the Sobolev space.

Theorem 2.11. Let Ω ⊂ Rn and suppose that f ∈ W 1,n(Ω,Rn) is a
homeomorphism. Then f satisfies the Lusin (N) condition.
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We show the sharpness of this result by the construction of the home-
omorphism of finite distortion in W 1,p, p < n, which maps a null set to
a set of positive measure.
For mappings of finite distortion we give the following positive results.

Theorem 2.12. Let Ω ⊂ Rn be open and let f ∈ W 1,n
loc (Ω,Rn) be a

mapping of finite distortion. Then the continuous representative of f
satisfies the Lusin (N) condition.

Theorem 2.13. Let Ω ⊂ Rn be open and let f : Ω→ Rn be a mapping
of finite distortion. Suppose that there is λ > 0 such that exp(λKf) ∈
L1

loc(Ω). Then the continuous representative of f satisfies the Lusin (N)
condition.

Again we give a general construction of a mapping which maps a
certain product of Cantor type sets to a product of Cantor type sets to
show the sharpness of our assumptions.
In the last part of this chapter we study condition that guarantee that

preimages of sets of measure zero have zero measure. This corresponds
to the fact that no material can be lost during our deformation.

Theorem 2.14. Let a continuous mapping f ∈ W 1,1(Ω,Rn) be a map-
ping of finite distortion with K

1
n−1

f ∈ L1(Ω). If the multiplicity of f is es-
sentially bounded by a constant N and f is not constant, then Jf(x) > 0
a.e. in Ω and hence f satisfies the Lusin (N−1) condition, i.e.

for each E ⊂ f(Ω) such that |E| = 0 we have |f−1(E)| = 0 .

By similar construction as before with different Cantor type sets we
show the sharpness of the assumption K

1
n−1

f ∈ L1(Ω).

Lately it has been shown in Hencl [11] that for every p < n it is
possible to construct a homeomorphism f ∈ W 1,p((0, 1)n, (0, 1)n) which
maps a set of measure zero to a set of measure one and the remaining set
of measure one to a set of measure zero. This shows that the Lusin (N)
and (N−1) condition may fail in a terrible way even for a Sobolev home-
omorphisms. This was improved in D’Onofrio, Hencl and Schiattarella
[8] where it was shown that this homeomorphism in dimension n ≥ 3
may even satisfy f−1 ∈ W 1,1.
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2.4. Homeomorphisms of finite distortion.
In this chapter we study various properties of homeomorphisms of fi-

nite distortion like the regularity of the inverse mapping, regularity of
the composition, sharp moduli of continuity, sense preservation (i.e. the
Jacobian does not change sign) and approximation of Sobolev homeo-
morphism.
The results about the regularity of the inverse in the planar case were

established by Hencl and Koskela [12] and they are the main content in
the first chapter of the book. The main result states that the inverse of
a planar homeomorphism of finite distortion is a Sobolev mapping and
it is a mapping of finite distortion as well.

Theorem 2.15. Let Ω ⊂ R2 be a domain and let f : Ω→ f(Ω) ⊂ R2

be a homeomorphism with f ∈ W 1,1
loc (Ω,R2) and assume that Jf(x) ≥ 0

almost everywhere. Then the following conditions are equivalent:
(i) f−1 ∈ W 1,1

loc (f(Ω),R2),

(ii) f has finite distortion,
(iii) f−1 has finite distortion.

For the higher dimensional counterpart we need to assume that f ∈
W 1,n−1. These results were established in Hencl, Koskela, Malý [17] and
Csörnyei, Hencl and Malý [7].

Theorem 2.16. Let Ω ⊂ Rn be an open set. Suppose that f ∈ W 1,n−1(Ω,Rn)
is a homeomorphism of finite distortion. Then f−1 ∈ W 1,1

loc (f(Ω),Rn)
and has finite distortion.

There are counterexamples of finite distortion if one only assumes
that f ∈ W 1,p for p < n− 1. Without the assumption that f has finite
distortion the inverse of even Lipschitz homeomorphism in the plane
may fail to be Sobolev.

Example 2.17. There is a homeomorphism f : R2 → R2 such that f
is Lipschitz, but f−1 /∈ W 1,1

loc (R2,R2).

Proof. Indeed, let u be the usual Cantor ternary function on the interval
(0, 1). Then u is continuous, non-decreasing, constant on each comple-
mentary interval of the ternary Cantor set and fails to be absolutely
continuous. Let now v(x) = x+u(x) on (0, 1) and extend v to negative
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reals as v(x) = x and to x ≥ 1 as v(x) = x+ 1. Then also v fails to be
absolutely continuous but v−1 is Lipschitz. The mapping g defined sim-
ply by g([x1, x2]) = [v(x1), x2] is clearly a homeomorphism, but it is not
absolutely continuous on almost all lines parallel to coordinate axes as v
is not absolutely continuous. It follows that g does not satisfy the ACL-
condition and hence g /∈ W 1,1

loc (R2,R2). It is easy to check that f = g−1

is Lipschitz continuous and thus f has the desired properties. �

On the other hand we still get the weaker regularity of the inverse
without the assumption that f has finite distortion.

Theorem 2.18. Let Ω ⊂ Rn be an open set. Suppose that f ∈ W 1,n−1(Ω,Rn)
is a homeomorphism. Then f−1 ∈ BVloc(f(Ω),Rn).

Assuming that f has finite distortion for the regularity of the inverse
is not artificial. Every homeomorphism with f ∈ W 1,1 and f−1 in W 1,1

is necessarily a mapping of finite inner distortion - this was shown in
Hencl, Moscariello, Passarelli di Napoli, Sbordone [18] . Let us note
that Theorem 2.16 holds even with the weaker assumption that f has
finite inner distortion.
In the subsection about the regularity of the composition we study

optimal conditions on a homeomorphism f that guarantee that u ◦ f ∈
W 1,q for every u ∈ W 1,p, p ≥ q. These results are based on a paper by
Kleprlík [26] which was written as a Master Thesis under the supervision
of Hencl.
In the next part, we address the following problem, originally asked by

P. Hajlasz. Suppose that Ω ⊂ Rn is a domain and that f : Ω → Rn is
a homeomorphism of the Sobolev class W 1,1

loc (Ω,Rn). Is it true that the
Jacobian Jf is either non-negative almost everywhere or non-positive al-
most everywhere? It is well-known that every homeomorphism defined
on a domain Ω is either sense-preserving or sense-reversing and there-
fore we can ask whether each sense-preserving homeomorphism in the
Sobolev space W 1,s

loc satisfies Jf ≥ 0 almost everywhere. Roughly speak-
ing, we are interested in the question whether topological and analytical
definitions of orientation lead to the same result. We give a detailed
proof under the assumption that p > n − 1 and we recall the result of
Hencl and Malý [15].
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Theorem 2.19. Let Ω ⊂ Rn, n ≥ 2, be a domain, p = 1 for n = 2, 3
and p > [n/2] for n ≥ 4. Suppose that f ∈ W 1,p

loc (Ω,Rn) is homeomor-
phism. Then either Jf ≥ 0 a.e. or Jf ≤ 0 a.e.

It is still not known if this result holds for example in dimension n = 4
under the assumption that f ∈ W 1,1.
In the last part we give an overview of one of the most interesting

and important problems in this area, originally posed by Evans and
later promoted by Ball. Let Ω ⊂ Rn be a domain and 1 ≤ p < ∞.
Suppose that f ∈ W 1,p(Ω,Rn) is a homeomorphism. Is it possible to
find a sequence of piecewise affine homeomorphisms f̃k such that ‖f̃k −
f‖W 1,p → 0? Is it possible to find a sequence of smooth homeomorphisms
fk such that ‖fk − f‖W 1,p → 0? Partial motivation for this problem
comes from regularity of models in nonlinear elasticity. Also, piecewise
affine approximation would be nice for numerical approximation.

2.5. Integrability of Jf and other results.
It is well-known that for each quasiregular mapping f ∈ W 1,n(Ω,Rn)

(and K ∈ L∞) there is p > n such that |Df | ∈ Lploc(Ω) and hence
Jf ∈ L

p
n

loc(Ω). This remarkable self-improving regularity result, which
is based on a reverse Hölder inequality, is important for many other
properties of quasiregular mappings.
In this chapter we give a generalization of this fact for mappings with

exponentially integrable distortion.

Theorem 2.20. Let Ω ⊂ Rn, n ≥ 2, be a domain and let f ∈
W 1,1

loc (Ω,Rn) be a mapping of finite distortion. Assume that exp(βKf) ∈
L1

loc(Ω), for some β > 0. Then

Jf logα(e+ Jf) ∈ L1
loc(Ω), and |Df |n logα−1(e+ |Df |) ∈ L1

loc(Ω),

where α = C1β and C1 = C1(n) > 0.

Next we study the optimal integrability of 1
Jf

for homeomorphisms of
finite distortion. As an application of our estimates we show that sets
of corresponding zero capacity are removable singularities for mappings
with exponentially integrable distortion.
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2.6. Final comments and Appendix.
In chapter Final Comments we briefly discuss the inner distortion

function. For mappings of finite distortion we have defined the distortion
function Kf . It is often called the outer distortion function and referred
to by

KO(x) :=

{
|Df(x)|n
Jf (x) for Jf(x) > 0 ,

1 for Jf(x) = 0 .

It is possible to define also other distortion functions such as the inner
distortion function

KI(x) :=

{
| adjDf(x)|n
Jf (x)n−1 for Jf(x) > 0 ,

1 for Jf(x) = 0 ,

where adjDf(x) denotes the adjugate matrix of Df(x), i.e. the matrix
of the (n − 1) × (n − 1) subdeterminants. These distortion functions
coincide for n = 2 but they are different for n ≥ 3.
We have the following geometrical interpretation. Let E be the ellip-

soid defined as E = {Df(x)z ∈ Rn : |z| ≤ 1}. Then KO corresponds
to the ratio of the longest axis of E to power n divided by the volume
of E and KI corresponds to the ratio of the (n− 1)-dimensional volume
of the largest intersection of E with (n− 1)-dimensional hyperplane to
power n divided by the volume of E to power n− 1. Roughly speaking
the outer distortion corresponds to the deformation of lengths of seg-
ments and the inner distortion corresponds to the deformation of the
(n− 1)-dimensional volumes of intersection with hyperplanes.
We also give the connection in the plane between mappings of finite

distortion and solutions to a degenerate Beltrami equation. Moreover,
we study the shape of the image of the unit disk under a mapping
of finite distortion. It is possible to characterize the image of a disc
under a quasiconformal mapping and we aim at some characterization
for mappings in our class. We give some first results in this direction and
we ask many open problems in this area. Finally, we show that certain
families of mappings with exponentially integrable distortion are closed
under weak convergence
In the Appendix we have included many classical results from Real

Analysis, Sobolev spaces and Geometric Measure Theory. Most of these

16



results contain proofs for the convenience of the reader as it may serve
as a material for the graduate students.
This chapter contains for example the proof of the approximative dif-

ferentiability of Sobolev mappings and the approximation of Sobolev
function by the smooth functions given by mollification. Later we show
that Sobolev function can be approximated by Lipschitz function that
agree with the given Sobolev function on a big set and using this we
prove the Area Formula and Change of Variables formula for Sobolev
mappings assuming that the reader is familiar with Area Formula for
Lipschitz mappings.
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